Categories
August 2021 Observations Nature Observations

Fantastic Fungi (NFN Fungi Hike, Part 2)

Back in August, I went for a hike with the Norfolk Field Naturalists to search for Fungi to photograph (see Part 1). Along the way, I encountered many organisms both fungal and not-so-fungal.

One non-fungus was photographed perched atop some fungi on a log. The creature was a Marbled Fungus Weevil (Euparius marmoreus), which feeds on polypore fungi (Marshall 2018).

Marbled Fungus Weevil, the only time I used my macro lens on this entire hike.

The next observation brings us back to the focus of the hike: Fungi. This strange spherical object covered in a lacework pattern is the fruiting body of an Earthball (Scleroderma). These fungi actually interconnect with tree roots to form mycorrhizal associations, benefitting the trees and the fungus (Stephenson 2010).

Earthball (Scleroderma), the fruiting body of a mycorrhizal fungus.

Another spherical object caught our eye while hiking through the woods: an Oak apple gall. This particular one was caused by Amphibolips cookii, a Gall Wasp feeding within the bud of a Red Oak (Quercus rubra). The bud developed into this spherical gall, while the larva fed within and then this “oak apple” detached and fell to the forest floor, and I guess the adult wasp has already left this gall behind? I don’t know, it was very difficult to find any information about this species or gall wasps (Cynipidae) in general despite them being fascinating insects (what I did find was a website that contains some information: gallformers.org, a site worth checking out if interested). I have a particular fondness for galls caused by insects… they’re plant growths that create particular species-specific patterns for the insects that inhabit them… what’s not to like?

Oak Apple Gall (caused by Amphibolips cookii).

Further down the trails, we encountered some classically shaped mushrooms unlike the more bizarre (in my opinion) Earthballs (Scleroderma). A member of the genus Oudemansiella and a member of the genus Russula.

Oudemansiella mushroom.

Russula fungi are ectomycorrhizal, meaning that their underground mycelia (the major part of the fungal body) connect with roots of trees and other plants to transfer and exchange nutrients (Stephenson 2010). 

Russula mushroom.

Some of the most common fungi that we spotted were associated (as many fungi are) with dead or dying wood. Fungi that feed on dead or decaying material are known as saprotrophs. Orange Mycena (Mycena leaiana) were spotted multiple times throughout our excursion and I have to say they might be my favourite fungi that we found simply for aesthetic reasons. The beautiful colour of their fruiting bodies really brighten up the dead logs and fallen trees in the forest. 

Another wood-feeding saprotroph we found often is known as the “Oyster Mushroom” (Pleurotus), apparently because of its fishy smell (which I couldn’t detect, perhaps it needs to be cooking?). These are very commonly collected for humans to eat.  As mentioned above, the Oyster Mushrooms feed on decaying and dead wood, but they also feed on microscopic creatures called nematodes. The details of the interaction are incredible. The Pleurotus fungi has special cells among its hyphae (the underground components of the fungal mycelium) which produce a toxin that paralyzes nematodes. After contact, the nematodes continue moving (usually much slowed, and erratically) for 30 seconds to several minutes before succumbing to the paralyzing toxin. The immobilized nematodes are then attractive to fungal growth from the Pleurotus mycelium, which produces hyphae that thread through the material (usually dead wood or soil) to reach the nematodes and enter their bodies. These fungal threads break the nematode down, consuming it while it is still alive but paralyzed. If you’re interested in more of these details, you can read the full paper where it’s described (Barron and Thorn 1987) here: https://cdnsciencepub.com/doi/10.1139/b87-103.

Pleurotus mushroom, unassuming destroyer of wood and nematodes.

There were a couple of other saprotrophic fungi found feeding on logs during the hike. Resinous Polypore (Ischnoderma resinosum) has a strange texture that was unexpected, though appearing like tougher shelf fungi it was actually quite soft and pliable. Our guide likened it to the feel of a donut and I can attest that this assessment is bizarrely valid.

Resinous Polypore, strangely soft and light.

Not all fungi grow on logs however, and there are several interesting groups that are very easy to miss. One colorful but tiny fungus is the Red Chanterelle (Cantharellus cinnabarinus) which grows singly or in clumps and is connected to the root systems of trees in yet another mycorrhizal relationship.

Red Chanterelle peeking out from the leaf litter.

Two representatives of a more bizarre ground-sprouting group would have been easily missed. This group is known as the “Earth-tongues” (Family Geoglossaceae). You can (perhaps unfortunately) see their resemblance to strange tiny tongues protruding from the soil. Our guide was quite excited to have spotted the dark Earth-tongues (identified via iNaturalist as Trichoglossum because of the tiny hairs) because they would be very easy to miss.

That brings us to the end of the fascinating fungi that I spotted on our hike! It is not the end however of the non-fungal sightings. A few more of those to review in the final part of this ‘series’.

References:

G. L. Barron and R. G. Thorn, 1987. Destruction of nematodes by species of PleurotusCanadian Journal of Botany65(4): 774-778. https://doi.org/10.1139/b87-103

Marshall, Stephen. 2018. Beetles: The Natural History and Diversity of Coleoptera.

Stephenson, Steven. 2010. The Kingdom Fungi.

For other Nature Observations in Norfolk County, see:

Freezing Frogs and Fascinating Fungi (NFN Fungi Hike Part 1)

-A Visit to Big Creek, Part 1 and Part 2

The Wonders of Wrens

Cuckoo Wasps and Carpenter Bees

Flies Falling to Fungi and Other Dipteran Observations

Fuzzy Flies and Song Sparrows

Leafhoppers, Lepidopterans and Longhorns

And for more nature observations, photos and natural history facts, follow me on instagram at norfolknaturalist

Categories
Nature Observations

Freezing Frogs and Fascinating Fungi (NFN Fungi Hike, Part 1)

I recently joined a local group of nature enthusiasts known as the Norfolk Field Naturalists. My very first outing with the Norfolk Field Naturalists was a hike through the Backus Woods Conservation Area with a local Fungi expert Leanne Lemaich. The hike was rewarding for the opportunity to meet up with others who share my passion for learning about the nature around us, and I learned a lot about the various fungi in the area. I used my camera extensively, capturing fungi and non-fungi (some new ones for me!) as you’ll see below. All in all, it was a great experience despite feeling as though I singlehandedly sponsored the next generation of mosquitoes with most of my blood supply…

Let’s begin with a brief primer on Fungi, because that’s how our hike began as well. Despite being classified so often with plants, fungi are actually more closely related to animals, but in any case they are neither. Unlike plants, fungi can’t produce their own energy, ie. they don’t contain chlorophyll, the pigment that makes leaves green and captures energy from the sun to create sugars/carbons (the incredible process known as photosynthesis). Instead, fungi feed on other organisms just like all animals do. Many fungi feed on dead organisms (termed saprophytic, or saprotrophic), but there are also many that feed on or within living organisms and still others form symbiotic relationships (which can grade into parasitism… the difference between symbiosis and parasitism is actually very grey-shaded). Although most of a fungus is composed of tiny threads that grow and proliferate out of sight, there are extraordinary structures that appear for reproductive purposes and these are collectively called “mushrooms”. I like to think of mushrooms as the equivalent of flowers, because they’re the visible part that facilitates reproduction just like the flowers in plants (via insects/other organisms/wind/rain/other weather processes in both instances). Now that we have a (very) basic idea of what fungi are, we can move onto some of the particular ones I observed and photographed on this hike, as well as many non-fungi spotted along the way!

Our first fungal find was a Bolete (Family Boletaceae), and the first incredible fact that I learned was that this mushroom couldn’t be identified without a… taste test. We hear so often about the dangers of foraging for mushrooms, because there are poisonous lookalikes to edible species and such, that I was very intrigued to learn that some mushrooms are identified by taste. Of course, I will reiterate the warning you will hear literally everywhere mushroom foraging is mentioned (and for good reason): DON’T EAT MUSHROOMS IF YOU’RE UNSURE OF THEIR ID.

Unidentified Bolete emerging from the leaf litter.

Next up was a familiar species even to me, a comparative novice when it comes to fungal identification: Turkey-tail (Trametes versicolor). This common species feeds on dead wood, and contains enzymes able to break down cellulose and lignin at the same time (Stephenson 2010). These are the two main components of plant cell walls, and are notoriously difficult for animals to digest.

Turkey-tail fungus growing out of the side of a log.

Several times during the hike, we came upon Coral fungi, which unsurprisingly resemble underwater corals in their branching structures. Our guide identified some of these as possible Ramaria species, but she also pointed out a false coral (Sebacina schweinitzii).

This next unassuming organism isn’t a fungus, but rather a strange living thing called a slime mould, specifically the Dog-vomit Slime Mould (Fuligo septica). The Dog-vomit Slime Mould is part of a group known as the plasmodial slime moulds, the Myxomycetes. Myxomycetes have a complicated and confusing life cycle. They have two feeding stages: the first consists of single cells which move and feed within their environment like amoebae (Stephenson 2010). These single cells reproduce and form a plasmodium, which is still a mass of what might be termed a single cell because it doesn’t have any cell walls, but it contains many nuclei (Stephenson 2010). In both of these stages, myxomycetes usually feed on bacteria or fungi that they encounter. I believe the Dog-vomit slime mould that I encountered was in this plasmodium stage, possibly preparing for its ‘final form’ which would be the production of fruiting bodies which would disperse tiny spores to start the process all over again (Stephenson 2010). Bizarre organisms… aliens of the forest floor.

Dog-vomit Slime Mould.

We encountered one other species of slime mould during the hike which was much more aesthetically pleasing than the one named after dog-vomit… the Red Raspberry Slime Mould (Tubifera ferruginosa).

Red Raspberry Slime Mould. For scale, note the blurry Harvestman (Opilione) to the right of the Slime Mould fruiting bodies.

While stepping through the undergrowth to approach some fungi, I disturbed some hopping amphibians at my feet. At first glance, we thought they were regular toads (ie. Eastern American Toads: Anaxyrus americanus) and some of them were, but one stood out as something distinctively different. This frog was one that I had never seen before, though I had heard its strange “quacking” calls during hikes in the past: a Wood Frog (Lithobates sylvaticus). Part of the reason I haven’t seen them is their superb camouflage, which consists of not only a generalized leaf-litter brown pattern. Wood Frogs also exhibit background matching: changing their skin to match their surroundings. While in breeding ponds in the Spring they are darker (and thus match the water more closely), and assume a lighter coloration when among the generally lighter leaf litter of their environment for the rest of the year (Wells 2007).

Wood Frog among the leaf litter. Pretty well camouflaged, I must say.

One of the facts that always comes to the fore of my mind when I think of Wood Frogs is not their strange call, or their camouflage, but the fact that they can tolerate being frozen. Wood Frogs, at the onset of winter, have physiological mechanisms that promote ice formation between their cells, and prevent ice formation within their cells. What this response amounts to is well described by Bernd Heinrich in Winter World: “the frog is frozen solid except for the insides of its cells. Its heart stops. No more blood flows. It no longer breathes. By most definitions, it is dead.” (Heinrich 2003, p 174). The incredible part of the story is that the Wood Frog is not dead, but rather will await the arrival of spring beneath the leaf litter and revive during warmer temperatures. They can in fact revive from frozen to active within a single day (Harding and Mifsud 2017). As Heinrich says, Wood Frogs are “biological marvels that challenge the limits of our beliefs of what seems possible.” (Heinrich 2003 p 175).

Another Wood Frog spotted during the hike.

As I mentioned above, Wood Frogs weren’t the only anurans (frogs and toads) spotted during our hike. On several occasions, we observed American Toads (Anaxyrus americanus) on the forest floor. I don’t have anything particularly interesting to say about toads right now, besides that they are amazing to look at if you take the time. Below are pictures of a particularly large toad (about the size of my fist) and a smaller toad, which was captured from an unusual angle. The angle really makes me reassess toads in general but maybe that’s just me.

For no particular reason, I’m going to pause here for Part 1! Keep an eye out for future parts, because during this hike I spotted many more fungi, and some more non-fungi as well.

References:

Harding, James and Mifsud, David. 2017. Amphibians and Reptiles of the Great Lakes Region, Revised Edition.

Heinrich, Bernd. 2003. Winter World.

Stephenson, Steven. 2010. The Kingdom Fungi.

Wells, Kentwood. The Ecology and Behavior of Amphibians.

For similar Nature Observations in Norfolk County see:

-A Visit to Big Creek, Part 1 and Part 2

The Wonders of Wrens

Cuckoo Wasps and Carpenter Bees

Flies Falling to Fungi and Other Dipteran Observations

Fuzzy Flies and Song Sparrows

Leafhoppers, Lepidopterans and Longhorns

And for more nature observations, photos and natural history facts, follow me on instagram at norfolknaturalist